Revaprazan, a novel acid pump antagonist, exerts anti-inflammatory action against Helicobacter pylori-induced COX-2 expression by inactivating Akt signaling
نویسندگان
چکیده
Chronic gastric inflammation developing after Helicobacter pylori (H. pylori) infection is responsible for either dyspeptic symptom relevant to gastritis/peptic ulcer or gastric tumorigenesis, in which acid suppressants, especially proton pump inhibitors (PPIs), play role in relieving dyspepsia as well as the eradication regimen. Among several mediators engaged in propagating gastric inflammation after H. pylori infection, cyclooxygenase-2 (COX-2) might be the principal one, and several prescriptions have been made for decreasing the COX-2 levels. Multiple line of evidence are available for anti-inflammatory action of PPIs beyond acid suppression, but revaprazan, a novel acid pump antagonist launched in clinic, has also been suggested to exert significant anti-inflammatory actions as much as PPI. In the current study, we hypothesized that revaprazan could regulate H. pylori-driven COX-2 expression as one of its anti-inflammatory pharmacological actions. The changes of gastric COX-2 expression as well as responsible transcription factors were measured after H. pylori infection in the presence or absence of revaprazan. Infection of AGS cells with H. pylori induced significant up-regulation of COX-2 in time- and concentration-dependent manners, which was mediated by Akt phosphorylation. Revaprazan treatment significantly inhibited IkappaB-alpha degradation as well as Akt inactivation, resulting in attenuation of H. pylori-induced COX-2 expression. Additional rescuing action of revaprazan against H. pylori-induced cytotoxicity was noted. In conclusion, revaprazan imposed significant anti-inflammatory actions on H. pylori infection beyond acid suppression.
منابع مشابه
Modulation of gastric mucosal inflammatory responses to Helicobacter pylori by ghrelin: Role of cNOS-dependent IKK-β S-nitrosylation in the regulation of COX-2 activation
Disturbances in nitric oxide synthase (NOS) and cyclooxygenase (COX) isozyme systems, manifested by the excessive NO and prostaglandin (PGE2) generation, are well-recognized features of gastric mucosal inflammatory responses to H. pylori infection. In this study, we report that H. pylori LPS-induced enhancement in gastric mucosal inducible (i) iNOS expression and COX-2 activation was accompanie...
متن کاملEupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway
Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...
متن کاملRole of constitutive nitric oxide synthase in regulation of Helicobacter pylori-induced gastric mucosal cyclooxygenase-2 ac-tivation through S-nitrosylation: mechanism of ghrelin action
Gastric mucosal inflammatory responses to H. pylori lipopolysaccharide (LPS), are characterized by the excessive NO and prostaglandin (PGE2) generation due to the disturbances in nitric oxide synthase (NOS) and cyclooxygenase (COX) systems. Here, we report that the LPS-induced enhancement in gastric mucosal inducible (i) iNOS) activity and up-regulation in PGE2 production was associated with th...
متن کاملHelicobacter pylori Induces Disturbances in Gastric Mucosal Akt Activation through Inducible Nitric Oxide Synthase-Dependent S-Nitrosylation: Effect of Ghrelin
Gastric mucosal inflammatory response to H. pylori and its key virulence factor, lipopolysaccharide (LPS), are characterized by a massive rise in apoptosis and the disturbances in NO signaling pathways. Here, we report that H. pylori LPS-induced enhancement in the mucosal inducible nitric oxide synthase (iNOS) was associated with the suppression in Akt kinase activity and the impairment in cons...
متن کاملLansoprazole, a Proton Pump Inhibitor, Suppresses Production of Tumor Necrosis Factor-α and Interleukin-1β Induced by Lipopolysaccharide and Helicobacter Pylori Bacterial Components in Human Monocytic Cells via Inhibition of Activation of Nuclear Factor-κB and Extracellular Signal-Regulated Kinase
Pathogenic bacterial components play critical roles in initiation of gastrointestinal inflammation via activation of intracellular signaling pathways which induce proinflammatory cytokines such as tumor necrosis factor (TNF)-alpha and interleukin (IL)-1beta. Lansoprazole (LANSO), a proton pump inhibitor, has been widely used for the treatment of peptic ulcers and reflux esophagitis due to its p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 51 شماره
صفحات -
تاریخ انتشار 2012